Afhankelijkheid van kabel- en draaddwarsdoorsnede van stroombelastingen en vermogen

Bij het ontwerpen van een circuit voor elke elektrische installatie en installatie, is de keuze van draad- en kabelsecties een verplichte stap. Om de voedingsdraad van de gewenste doorsnede juist te selecteren, moet rekening worden gehouden met de grootte van het maximale verbruik.

De draaddwarsdoorsnede wordt gemeten in vierkante millimeters of "vierkanten". Elke "vierkante" aluminiumdraad kan gedurende lange tijd door zichzelf gaan terwijl hij verwarmt tot toegestane limieten, maximaal 4 ampère en koperdraden 10 ampère stroom. Als een elektrische verbruiker dus een vermogen van 4 kilowatt (4000 watt) verbruikt, is de stroom bij een spanning van 220 volt 4000/220 = 18,18 ampère en om deze van stroom te voorzien, volstaat het om er elektriciteit van te voorzien met een koperdraad van 18,18 / 10 = 1.818 vierkanten. In dit geval zal de draad echter werken op de limiet van zijn mogelijkheden, dus u moet de totale doorsnede van minstens 15% in de gaten houden. We krijgen 2.091 vierkanten. En nu zullen we de dichtstbijzijnde draad van het standaardgedeelte oppikken. ie voor deze verbruiker moeten we de bedrading van een koperdraad met een doorsnede van 2 vierkante millimeters uitvoeren, de zogenaamde stroombelasting. De waarden van stromen zijn gemakkelijk te bepalen, wetende de paspoortcapaciteit van de consument aan de hand van de formule: I = P / 220. Aluminiumdraad zal 2,5 keer dikker zijn, respectievelijk.

Op basis van voldoende mechanische sterkte wordt openvermogenbedrading meestal uitgevoerd met een draad met een doorsnede van ten minste 4 kV. mm. Als u nauwkeuriger wilt weten wat de toelaatbare stroombelasting op lange termijn voor koperdraden en -kabels is, kunt u de tabellen gebruiken.

Selectie van draad- en kabeldoorsneden voor stroom- en vermogensbedrading met behulp van tabellen

Wanneer de bedrading van het apparaat nodig is om van tevoren de stroomverbruikers te bepalen. Dit zal helpen bij de optimale kabelkeuze. Met deze keuze kan de bedrading lang en veilig worden bediend zonder reparatie.

Kabel- en geleiderproducten zijn zeer divers in hun eigenschappen en voorgenomen doel, en hebben ook een grote variatie in prijzen. Het artikel vertelt over de belangrijkste parameter van bedrading - de doorsnede van een draad of kabel door stroom en vermogen, en hoe de diameter te bepalen - bereken deze met de formule of selecteer deze met behulp van de tabel.

Algemene consumenteninformatie

Het stroomvoerende deel van de kabel is gemaakt van metaal. Het deel van het vlak dat loodrecht op de draad loopt, begrensd door metaal, wordt de dwarsdoorsnede van de draad genoemd. Als meeteenheid met vierkante millimeters.

De doorsnede bepaalt de toegestane stromen in de draad en de kabel. Deze stroom leidt volgens de wet van Joule-Lenz tot het vrijkomen van warmte (evenredig met de weerstand en het kwadraat van de stroom), wat de stroom beperkt.

Conventioneel zijn er drie temperatuurbereiken:

  • isolatie blijft intact;
  • isolatiebrandwonden, maar het metaal blijft intact;
  • metaal smelt van warmte.

Hiervan is alleen de eerste de toelaatbare bedrijfstemperatuur. Bovendien neemt bij een afnemende dwarsdoorsnede de elektrische weerstand ervan toe, hetgeen leidt tot een toename van de spanningsval in de draden.

Van materialen voor de industriële vervaardiging van kabelproducten met zuiver koper of aluminium. Deze metalen hebben verschillende fysische eigenschappen, in het bijzonder weerstand, daarom kunnen de doorsneden gekozen voor een gegeven stroom verschillend zijn.

Leer van deze video hoe je de juiste doorsnede van draad of kabel kiest voor stroom voor thuisbedrading:

Definitie en berekening van de aders door de formule

Laten we nu eens kijken hoe we de doorsnede van de draad correct kunnen berekenen door de formule te kennen. Hier lossen we het probleem op van het bepalen van de doorsnede. Het is de doorsnede die een standaardparameter is, vanwege het feit dat de nomenclatuur zowel single-core als multi-core versies bevat. Het voordeel van meeraderige kabels is hun grotere flexibiliteit en weerstand tegen knikken tijdens de installatie. In de regel zijn gestrande gemaakt van koper.

De eenvoudigste manier om de doorsnede van een enkele geleiderdraad, d - diameter, mm te bepalen; S is het gebied in vierkante millimeters:

Multicore wordt berekend door een meer algemene formule: n is het aantal draden, d is de diameter van de kern, S is het gebied:

Toegestane stroomdichtheid

De stroomdichtheid wordt heel eenvoudig bepaald, dit is het aantal ampères per sectie. Er zijn twee opties om te posten: open en gesloten. Open maakt een hogere stroomdichtheid mogelijk door een betere warmteoverdracht naar de omgeving. Een gesloten klep vereist een neerwaartse correctie, zodat de warmtebalans niet leidt tot oververhitting in de lade, kabelgoot of as, wat kortsluiting of zelfs brand kan veroorzaken.

Nauwkeurige thermische berekeningen zijn zeer complex, in de praktijk gaan ze uit van de toelaatbare bedrijfstemperatuur van het meest kritische element in het ontwerp, volgens welke stroomdichtheid wordt gekozen.

Tabel van de doorsnede van koper- of aluminiumdraad of kabelstroom:

Tabel 1 toont de toegestane dichtheid van stromen voor temperaturen die niet hoger zijn dan kamertemperatuur. De meeste moderne draden hebben PVC of polyethyleen isolatie, die tijdens bedrijf niet meer dan 70-90 ° C kan worden verwarmd. Voor "warme" ruimten moet de stroomdichtheid met een factor 0,9 voor elke 10 ° C tot de temperatuurlimietwerking van draden of kabels worden verminderd.

Dat wordt nu als open beschouwd en dat is gesloten bedrading. De bedrading is open als deze is gemaakt met klemmen (snippers) op de wanden, het plafond, langs de ophangkabel of door de lucht. Gesloten gelegd in kabelgoten, kanalen, ommuurd in de wanden onder de pleister, gemaakt in buizen, schede of in de grond gelegd. Overweeg ook om de bedrading gesloten te houden als deze zich in aansluitdozen of schermen bevindt. Gesloten gaat erger af.

Laat de thermometer in de droogruimte bijvoorbeeld 50 ° C zien. Tot welke waarde moet de huidige dichtheid van de koperen kabel in deze kamer over het plafond worden beperkt als de kabelisolatie bestand is tegen verwarmen tot 90 ° C? Het verschil is 50-20 = 30 graden, wat betekent dat je de factor drie keer moet gebruiken. te beantwoorden:

Voorbeeld van berekening van het gebied van bedrading en belasting

Laat het verlaagde plafond verlicht worden door zes lampen van elk 80 W en ze zijn al met elkaar verbonden. We moeten ze van stroom voorzien met behulp van aluminiumkabel. We nemen aan dat de bedrading gesloten is, de kamer droog is en de temperatuur op kamertemperatuur is. Nu leren we hoe we de stroomsterkte van de draaddwarsdoorsnede berekenen uit de kracht van koper- en aluminiumkabels. Hiervoor gebruiken we de vergelijking die het vermogen definieert (de netspanning volgens nieuwe normen wordt verondersteld 230 V te zijn):

Met behulp van de juiste stroomdichtheid voor aluminium uit tabel 1 vinden we het gedeelte dat nodig is om de lijn te laten werken zonder oververhitting:

Als we de diameter van de draad moeten vinden, gebruik dan de formule:

De APPV2x1.5-kabel (sectie van 1,5 mm.kv) is geschikt. Dit is misschien wel de dunste kabel die op de markt te vinden is (en een van de goedkoopste). In het bovenstaande geval biedt het een tweevoudige vermogensmarge, dat wil zeggen dat een verbruiker met een toelaatbaar belastingsvermogen tot 500 W, bijvoorbeeld een ventilator, een droger of extra lampen, op deze lijn kan worden geïnstalleerd.

Snelle selectie: bruikbare standaarden en verhoudingen

Om tijd te besparen, worden de berekeningen meestal getabelleerd, vooral omdat het assortiment kabelproducten vrij beperkt is. De volgende tabel toont de berekening van de doorsnede van koperen en aluminium draden voor stroomverbruik en stroomsterkte afhankelijk van het doel - voor open en gesloten bedrading. De diameter wordt verkregen als een functie van het belastingsvermogen, het metaal en het type bedrading. De netspanning wordt verondersteld 230 V.

De tabel maakt het mogelijk om snel de doorsnede of diameter te selecteren als de belasting bekend is. De gevonden waarde wordt naar boven afgerond op de dichtstbijzijnde waarde uit de nomenclatuurreeks.

De volgende tabel vat de gegevens samen over toegestane stromen per sectie en de kracht van de materialen van kabels en draden voor de berekening en snelle selectie van de meest geschikte:

Aanbevelingen op het apparaat

Het bedradingsapparaat vereist onder andere ontwerpvaardigheden, en dat is niet iedereen die het wil doen. Het is niet genoeg om alleen goede elektrische installatievaardigheden te hebben. Sommige mensen verwarren ontwerp met het uitvoeren van documentatie volgens sommige regels. Dit zijn compleet verschillende dingen. Een goed project kan worden geschetst op vellen notitieboekjes.

Maak eerst een plattegrond van uw bedrijf en markeer toekomstige verkooppunten en armaturen. Ontdek de kracht van al uw consumenten: strijkijzers, lampen, verwarmingstoestellen, enz. Noteer vervolgens de belasting die het vaakst in verschillende kamers wordt verbruikt. Hiermee kunt u de meest optimale kabelkeuzemogelijkheden kiezen.

Je zult verrast zijn hoeveel kansen er zijn en wat de reserve is om geld te besparen. Na het selecteren van de draden, bereken de lengte van elke lijn die u leidt. Zet het allemaal samen, en dan krijg je precies wat je nodig hebt, en zoveel als je nodig hebt.

Elke lijn moet worden beschermd door een eigen stroomonderbreker (stroomonderbreker), ontworpen voor de stroom die overeenkomt met het toegestane vermogen van de lijn (de som van de vermogens van de verbruikers). Tekenautomaat in het paneel, bijvoorbeeld: "keuken", "woonkamer", enz.

Gebruik in vochtige ruimtes alleen dubbel geïsoleerde kabels! Gebruik moderne stopcontacten ("Euro") en kabels met aardgeleiders en verbind de aarde op de juiste manier. Enkelkernige draden, vooral koper, buigen soepel en laten een straal van enkele centimeters over. Dit voorkomt hun knik. In kabelgoten moeten draadkanalen recht liggen, maar vrij, in geen geval als een touwtje eraan trekken.

In stopcontacten en schakelaars moet een marge van enkele extra centimeters zijn. Bij het leggen moet je ervoor zorgen dat er nergens scherpe hoeken zijn die de isolatie kunnen doorsnijden. Als de klemmen worden vastgedraaid wanneer ze moeten worden aangesloten, en voor gevlochten draden, moet deze procedure worden herhaald, ze hebben het kenmerk dat de draden krimpen, waardoor de verbinding kan losraken.

Wij brengen onder uw aandacht een interessante en informatieve video over hoe u de kabeldoorsnede correct kunt berekenen op basis van vermogen en lengte:

De keuze van draden over de sectie is het belangrijkste element van het project van stroomvoorziening van elke schaal, van de kamer tot grote netwerken. De stroom die kan worden getrokken in de belasting en kracht zal ervan afhangen. De juiste kabelkeuze zorgt ook voor elektrische en brandveiligheid en biedt een economisch budget voor uw project.

Draaddwarsdoorsnede voor stroom.

In theorie en praktijk wordt speciale aandacht besteed aan de keuze van de huidige dwarsdoorsnede (dikte) van de draad. In dit artikel, het analyseren van de referentiegegevens, zullen we kennis maken met het concept "sectionele gebied".

Berekening van het draadgedeelte.

De wetenschap maakt geen gebruik van het concept "dikte" van de draad. In de literatuur gebruikte terminologie - diameter en dwarsdoorsnede gebied. Van toepassing op de praktijk, wordt de dikte van de draad gekenmerkt door het oppervlak van de dwarsdoorsnede.

Het is vrij eenvoudig om de doorsnede van de draad in de praktijk te berekenen. Het oppervlak van de dwarsdoorsnede wordt berekend met behulp van de formule, vooraf de diameter ervan te meten (kan worden gemeten met behulp van schuifmaten):

S = π (D / 2) 2,

  • S - draaddoorsnede, mm
  • D is de diameter van de geleiderdraden. Je kunt het meten met een remklauw.

Een beter overzicht van de formule voor het draaddoorsnede-oppervlak:

Een kleine correctie is een afgeronde verhouding. De exacte berekeningsformule:

In elektrische bedrading en elektrische installatie gebruikte in 90% van de gevallen koperdraad. Koperdraad in vergelijking met aluminiumdraad heeft verschillende voordelen. Het is handiger om te installeren, met dezelfde stroomsterkte heeft een kleinere dikte, duurzamer. Maar hoe groter de diameter (dwarsdoorsnede), hoe hoger de prijs van koperdraad. Daarom, ondanks alle voordelen, als de huidige sterkte groter is dan 50 Ampère, wordt meestal aluminiumdraad gebruikt. In het specifieke geval wordt een draad met een aluminium kern van 10 mm of meer gebruikt.

Meet de dwarsdoorsnede van de draden in vierkante millimeters. Meestal in de praktijk (in huishoudelijke elektra), zijn er dergelijke dwarsdoorsnede gebieden: 0,75; 1.5; 2,5; 4 mm.

Er is nog een meting van het dwarsdoorsnedegebied (draaddikte) - het AWG-systeem, dat voornamelijk in de VS wordt gebruikt. Hieronder vindt u een tabel met draadsecties op het AWG-systeem, evenals een vertaling van AWG naar mm.

Het wordt aanbevolen om het artikel over de keuze van draadsectie voor gelijkstroom te lezen. Het artikel presenteert theoretische gegevens en argumenten over de spanningsval, over de weerstand van de draden voor verschillende secties. Theoretische gegevens zullen oriënteren welke stroomdoorsnede van de draad het meest optimaal is voor verschillende toelaatbare spanningsvallen. Ook over het echte voorbeeld van het object, in het artikel over de spanningsdaling op driefasige kabellijnen van grote lengte, worden formules gegeven, evenals aanbevelingen voor het verminderen van verliezen. Het verlies op de draad is rechtevenredig met de stroom en de lengte van de draad. En zijn omgekeerd evenredig met weerstand.

Er zijn drie basisprincipes bij het kiezen van een draadsectie.

1. Voor het passeren van elektrische stroom moet de dwarsdoorsnede van de draad (draaddikte) voldoende zijn. Het concept betekent voldoende dat wanneer het maximaal mogelijke, in dit geval, elektrische stroom passeert, de verwarming van de draad toelaatbaar is (niet meer dan 600 ° C).

2. Voldoende draaddoorsnede zodat de spanningsval de toegestane waarde niet overschrijdt. Dit geldt vooral voor lange kabellijnen (tientallen, honderden meters) en grote stromen.

3. De dwarsdoorsnede van de draad, evenals de beschermende isolatie, moet mechanische sterkte en betrouwbaarheid bieden.

Voor stroom, bijvoorbeeld kroonluchters, gebruiken ze voornamelijk gloeilampen met een totaal stroomverbruik van 100 W (een stroom van iets meer dan 0,5 A).

Als u de dikte van de draad kiest, moet u zich richten op de maximale bedrijfstemperatuur. Als de temperatuur wordt overschreden, zullen de draad en de isolatie erop smelten en bijgevolg zal dit leiden tot de vernietiging van de draad zelf. De maximale bedrijfsstroom voor een draad met een bepaalde doorsnede wordt alleen beperkt door het maximum van de bedrijfstemperatuur. En de tijd dat de draad in dergelijke omstandigheden kan werken.

Het volgende is een tabel met draaddiameters, waarmee u, afhankelijk van de sterkte van de stroom, het dwarsdoorsnedegebied van koperdraden kunt kiezen. Basislijn - het geleidergebied.

Maximale stroom voor verschillende koperdraden. Tabel 1.

Doorsnede van de geleider, mm 2

Ontwerp en elektrisch werk in netwerken van 0,4-6-10-35 kV

- stroomvoorziening van energievoorzieningen, ontwerp, elektrische en turn-key inbedrijfstelling

Keuze van kracht, stroom en doorsnede van draden en kabels

De waarden van stromen zijn gemakkelijk te bepalen, wetende de paspoortcapaciteit van de consument aan de hand van de formule: I = P / 220. De totale stroom van alle verbruikers kennen en rekening houden met de verhouding van de toegestane stroombelastingsdraad (open bedrading) tot de draaddoorsnede:

  • voor koperdraad 10 amp per vierkante centimeter,
  • voor aluminium 8 amp per millimeter vierkant, kunt u bepalen of de draad die u hebt geschikt is of dat u een andere draad moet gebruiken.

Bij het uitvoeren van verborgen stroombedrading (in een buis of in een muur) worden de gereduceerde waarden verminderd door vermenigvuldiging met een correctiefactor van 0,8. Opgemerkt moet worden dat open stroombedrading gewoonlijk wordt uitgevoerd met een draad met een doorsnede van ten minste 4 kV. mm bij voldoende mechanische kracht.

De bovenstaande verhoudingen worden gemakkelijk onthouden en verschaffen voldoende nauwkeurigheid voor het gebruik van draden. Als u meer wilt weten over de toelaatbare stroombelasting op lange termijn voor koperdraden en kabels, kunt u de onderstaande tabellen gebruiken.

De volgende tabel geeft een samenvatting van de gegevens over vermogen, stroom en doorsnede van kabelgeleidermaterialen voor de berekening en selectie van beschermingsmiddelen, kabelgeleidermaterialen en elektrische apparatuur.

Online home-wizard

Vroeg of laat worden alle huiseigenaren geconfronteerd met de noodzaak om elektrische bedrading te vervangen. In ouderwetse huizen is deze kwestie nog acuter - in dergelijke gebouwen is de bedrading meestal gemaakt van aluminiumdraad. Moet ik het veranderen? Dit artikel bespreekt de voor- en nadelen van aluminiumbedrading. Hoe sluit u aluminium draden aan?

Samenvatting van het artikel:

Voor- en nadelen

De aluminium draden hebben een aantal voordelen. Dat is waarom ze zo wijdverspreid zijn. De belangrijkste voordelen zijn:

  • Gewicht. In vergelijking met andere metalen die worden gebruikt bij de fabricage van bedrading, is aluminium de lichtste.
  • Corrosieweerstand. Tijdens de interactie met lucht wordt aluminium geoxideerd. De resulterende film beschermt de draad tegen verdere schade.
  • Price. Aluminium is een goedkoop metaal. Aluminium heeft een bijzondere toepassing gevonden bij de fabricage van stroomkabels. Het gewicht en de prijs van het materiaal maken het de beste optie bij het leggen van de luchtinlaat.

Het is belangrijk! Volgens PUE moet de doorsnede van aluminiumdraad minstens 16 vierkante meter bedragen. mm. Tijdens oxidatie wordt het gebied van de geleidende kabel aanzienlijk verkleind.

Een brede selectie van verschillende soorten aluminiumdraden is beschikbaar. Het zijn aluminium geleiders CIP die veel gevraagd zijn als stroomkabels. Elektrische draden voor interne bedrading worden gepresenteerd in de versie van APBPP, APPV, APV.

Deze draden hebben echter nadelen. De belangrijkste nadelen zijn:

  • Breekbaarheid en breekbaarheid. Bij langdurig gebruik verliezen de draden hun oorspronkelijke sterkte. Onder invloed van regelmatige oververhitting, en na het verstrijken van de levensduur, breekt de kabel letterlijk in de handen.
  • Vloeibaarheid. Aluminium neigt te rekken. Deze eigenschap wordt niet het best weerspiegeld in de kwaliteit van de schroefverbinding.

Het is belangrijk! De levensduur van de draden van aluminium metaal is 25 jaar. Verwacht niet meer!

Het verbindingspunt van het elektrische contact met de aluminiumdraad is een punt van hoge overgangsweerstand. Bij een slechte verbinding wordt de contactplaats regelmatig en sterk verwarmd.

Regelmatige oververhitting leidt tot vervorming van de draad. Hierdoor kan de isolatie van aluminiumdraden worden afgevoerd. Heel vaak hoor je over branden, waarvan de bron slechts de oude aluminium bedrading was.

Wat is de elektrische weerstand van aluminium draden? In vergelijking met koper heeft het hogere tarieven - 0.0271 Ohm x sq. mm / m - in aluminium, tegen 0,0175 Ohm x vierkante. mm / m voor koper. Met andere woorden, om dezelfde geleidbaarheid te bieden, hebt u een krachtiger aluminiumdraad nodig dan wanneer u koper gebruikte.

Vanwege de bovengenoemde nadelen, veel elektriciens, wanneer een vraag rijst: welke draad het beste is om te kiezen, geven hun voorkeur aan koper.

Wat te doen met de oude bedrading?

Oude aluminium bedrading moet zeker worden vervangen. Het grootste nadeel is de maximale belasting die het kan weerstaan. De overvloed aan moderne elektrische apparaten in woningen verhoogde de belasting van het netwerk aanzienlijk.

Om de belasting te verminderen, moet u verschillende extra aluminium lijnen leggen. Deze lijnen hebben een boiler, wasmachine en andere krachtige apparaten nodig. Om de bestaande reparatie niet te bederven, kan nieuwe bedrading worden verborgen in speciale decoratieve dozen.

Hoe sluit u aluminium draden aan?

Om de draden in het dagelijks leven aan te sluiten zijn vier basismanieren.

Schroefverbinding

Deze methode omvat de volgende stappen:

  • Strippen van de draad van isolatie - op 20 mm, gevolgd door strippen van het reeds blootliggende deel met een fijn schuurpapier.
  • Vaseline vet.
  • Draai de blootliggende draad in de ring en kleed hem op de schroef.

De nadelen van deze verbinding omvatten de noodzaak om de schroef verder vast te zetten. Door de vloeibaarheid van het materiaal is de verbinding verzwakt, wat contact belemmert.

Veerverbinding

Het voorbereidende werk is vergelijkbaar. Het afgewerkte uiteinde van de draad wordt in een speciaal aansluitblok gestoken. Veermethode bevrijdt van de noodzaak om de verbinding aan te halen. In de uitverkoop vindt u wegwerpclips en herbruikbare clips.

Klemmenstrook

Gestripte uiteinden van 5 mm worden in de corresponderende connectoren gestoken. Bevestig de draad met behulp van een schroef. Met deze methode kunt u de draden van verschillende secties vastmaken.

Stranding

De meest onbetrouwbare manier. Als het netwerk zwaar wordt belast, is oververhitting en uitzetting van het metaal onvermijdelijk. De resulterende opening zal de weerstand van voorbijgaande aard en verzwakking van het contact vergroten.

Als je nog steeds niet kunt verdraaien, volg dan de volgende aanbevelingen. Draadgeleiders moeten elkaar gelijkmatig verdraaien. Het aantal beurten is minimaal 3-5.

Zoals te zien op de foto, zijn aluminiumdraden die zijn verbonden door middel van een schroef- en veermethode veel veiliger en betrouwbaarder dan gewoon draaien.

Verbinding van koper en aluminium

Het vastlopen van aluminiumdraad met koper is onaanvaardbaar! Metalen hebben een verschillende thermische uitzettingscoëfficiënt. Een reeks ongelijke uitbreidingen en vernauwingen zal resulteren in los contact. Los contact zal op zijn beurt de verwarming van de twist regelmatig verhogen.

Indien nodig, de verbinding van draden van verschillende metalen, is het belangrijk om de afwezigheid van direct contact te verzekeren. Dit kan worden bereikt door een schroefverbinding en een aansluitblok te gebruiken.

Basisvereisten voor gebruik

Als uw keuze viel op aluminium draden, volg dan de volgende vereisten.

  • De minimale draadgrootte 16kv. millimeter.
  • Selectie van draden in overeenstemming met de verwachte belastingen.
  • Zorg voor betrouwbaar contact. Een van de beste opties is draadlassen, maar voor een dergelijke verbinding is een speciaal gereedschap nodig.

Nu u de voor- en nadelen van aluminiumdraden kent, kunt u uw eigen uitgebalanceerde keuze maken.

Aluminium draad en kabel merken en gebruiksgebieden

De voor- en nadelen van aluminium

Aluminiumkabelproducten hebben hun voor- en nadelen, op basis waarvan de materiaalkeuze voor specifieke taken plaatsvindt.

  1. Price. De kosten van de kabel spelen een cruciale rol in grote productievolumes. Er moet echter in gedachten worden gehouden dat als aluminiumkabel aanzienlijk goedkoper is dan koper met een vergelijkbaar gedeelte, het verschil in kosten niet significant is wanneer koper en aluminium worden vergeleken met verschillende secties, maar met een vergelijkbare toelaatbare stroombelasting.
  2. Gewicht. Aluminiumkabel weegt ongeveer de helft van het formaat van koper, dus bij het leggen van aluminium langs bovenlijnen, hebt u de helft van de steunen nodig. Dit vermindert de kosten van het bouwen van lijnen.
  1. Vloeibaarheid. Aluminiumkabels en -draden zijn meestal gemaakt van zachte legeringen en dit heeft een nadelige invloed op de kwaliteit van het contact. Tijdens gebruik verslechtert het contact met aluminium (vooral op strengen en schroefklemmen) en moeten ze periodiek worden getrokken. Dit komt door de vloeibaarheid.
  2. Oxidatie. Wanneer de aluminiumgeleider in een vochtige omgeving en in lucht werkt, oxideert deze. Bij dit proces wordt het oppervlak van de kern bedekt met een oxidefilm, waarna de oxidatieprocessen worden gestopt. Omdat de gevormde film hun ontwikkeling verhindert. Aan de ene kant beschermt aluminium op deze manier zichzelf tegen volledig verval, en aan de andere kant geleidt de oxidefilm geen stroom. Bijgevolg begint het contact eerst intensief op te warmen, naarmate de transiënte weerstand toeneemt en dan helemaal verdwijnt.
  3. Kwetsbaarheid. De meeste draden van aluminium breken, het is noodzakelijk om ze meerdere keren te buigen. Dit leidt tot problemen zowel tijdens de installatie van elektrische installaties als tijdens het onderhoudsproces, bijvoorbeeld bij het vervangen van stopcontacten en andere elektrische apparatuur.

Sommige van de nadelen, zoals vloeibaarheid, zijn echter afhankelijk van de specifieke fabrikant en het merk van het product Verschillende legeringen worden in dit gebied gebruikt.

Aluminium draadmerken

CIP - zelfdragende geïsoleerde draad. Het wordt gebruikt in bovengrondse hoogspanningslijnen met een spanning tot 35 kV. Het aantal geleefd is van 1 tot 4. De markering ziet er zo uit: "CIP 1, CIP 2" enzovoort. Als na het cijfer de letter "A" staat, dan is de nulgeleider geïsoleerd, zo niet - dan is de nul zonder isolatie. De aderen zijn gecoat met UV-bestendig polyethyleen. De markering kan het aantal kernen en hun ontwerp variëren. Een onderscheidend kenmerk van het merk CIP 3 - is dat het een draad uit één kern van staal en aluminium is.

APV - aluminiumdraad met een monolithische geïsoleerde kern, geproduceerd in het bereik van secties van 2,5 tot 16 vierkante meter. mm. Gebruikt voor de assemblage van elektrische circuits, schermen en kasten, kan worden gebruikt voor de montage van armaturen voor verlichtingsarmaturen. Producten van dit merk worden in de muren, buizen, trays gelegd. Ontworpen voor spanningen tot 1000 V 50 Hz. Isolatiemateriaal - PVC-kunststof.

A - niet-geïsoleerde draad, gebruikt op bovengrondse hoogspanningslijnen. De draden bestaan ​​uit dunne draden gedraaid in de zogenaamde gekruld. Reikwijdte van 16-750 vierkante meter. mm.

De luidspreker is een niet-geïsoleerde draad, deze verschilt van de vorige alleen in de aanwezigheid van een stalen kern, waardoor deze meer stijf is en bestand tegen mechanische belasting.

Aluminium kabelmerken

AVVG - met aluminium geleiders en dubbele vinylisolatie. Misschien een van de meest voorkomende soorten kabels. Gebruikt in netwerken van 0,66 / 1 kV met een wisselstroomfrequentie van 50 Hz. Beschikbaar in het bereik van secties van 2,5 tot 240 vierkante meter. mm. Met het aantal geleefd van 2 tot 4. Het wordt gebruikt voor stationaire aansluiting van elektrische apparatuur op het voedingsnetwerk, kan worden gebruikt in ruimten met moeilijke omstandigheden, bijvoorbeeld gedeeltelijk overstroomd, met een hoge luchtvochtigheid of explosief. Het kan worden gebruikt als een geleider voor stroombedrading en wordt feitelijk actief gebruikt in netwerken van 0,4 kV. Gebruikt voor bedrading in huizen, geschikt voor het aansluiten van stopcontacten en in productie.

AVBBSHV - met aluminium geleiders en tape armour PVC-isolatie van elke kern en laag van omringende isolatie, of liever, buiten PVC-slang. Het aantal woonde van 1 tot 5, en hun doorsnede van 2,5 vierkante meter. mm tot 240 vierkante meter. mm. Nominale spanning - 0.66-1 kV en 50 Hz frequentie van wisselstroom. Het kan worden gebruikt voor het leggen van bedrading en het aansluiten van elektrische installaties op het voedingsnetwerk in moeilijke omstandigheden, evenals voor de mogelijkheden van mechanische schade, in explosiegevaarlijke en brandgevaarlijke gebouwen. Inclusief voor externe aanleg en ondergronds, bijvoorbeeld voor de invoer naar het huis van de stroomkabel. Met het pantser van twee linten kunt u een lijn leggen zonder extra bescherming tegen knaagdieren. Bij secties van meer dan 6 vierkant. mm. isolatie is versterkt met een laag van cross-linked polyethyleen en een cover van bitumen.

VZW - gepantserd met stalen banden, maar ook in een loodmantel. Het aantal aders van 1 tot 4, hun doorsnede ligt in het bereik van 16-800 vierkante meter. mm. Wordt gebruikt voor werkzaamheden in elektrische installaties met een spanning tot 10 kV. Afhankelijk van de flexibiliteitsklasse en het oppervlak van de dwarsdoorsnede, kunnen de geleiderdraden eendelig zijn (monolithisch, in de catalogi kunnen worden afgekort als "koelmiddel") of meerdradig. De aderen zijn bedekt met papierisolatie, ingesloten in een scherm van elektrisch geleidend papier. Ze zijn ingesloten in een loodmantel en het kussen is gemaakt van bitumen, crêpepapier en PVC-folie. Het kan worden gebruikt voor het leggen in de grond met lage en gemiddelde corrosieve activiteit.

ApvPug - gepantserd voor lijnen met een spanning tot 6-10 kV met frequentie 50 Hz. Type wapenrusting - stalen band. Isolatie - gecrosslinkte polyethyleen. Ontworpen voor het leggen in de grond: sleuven en grond, ongeacht de mate van corrosieve activiteit. Daarom verzegeld, beschermd tegen vocht. Het kan worden gebruikt voor bovengrondse leidingen, en in het geval van een adequate brandbeveiliging (toepassing van brandvertragende coatings) en in gebouwen. Het bereik van secties - van 50 tot 800 vierkante meter. mm, gevlochten geleiders. In aanvulling op de kabel is er een scherm van koperdraad gedeelte van 16-35 vierkante meter. mm bevestigd met kopertape. De materialen maken het mogelijk om het zelfs in bevaarbare en niet-navigeerbare reservoirs te leggen, op voorwaarde dat de kans op mechanische schade aan de kabel uitgesloten is.

AABL - gepantserd, voor leggen in netwerken van 1-10 kV. De kernen kunnen enkeldraads of meerdradig zijn, geïsoleerd met geïmpregneerd papier, waarop bovenop een riemisolatie van halfgeleidend papier is geplaatst. Het is allemaal ingesloten in een aluminium omhulsel en bepantsering van twee stalen tapes. Toegestane spanningen worden aangegeven in de etikettering, bijvoorbeeld AABL 1-1 kV, AABL 6-6 kV, AABL 10-10 kV, respectievelijk. Het bereik van secties van 50-240 vierkante meter. mm. Het kan op elk terrein worden gebruikt, van gematigde tot koude klimaten. Voor het leggen van verticale secties van lijnen is het onmogelijk om dit type kabel te gebruiken, er is een special met niet-stromende impregnatie TSAABL-10. In de grond, kunt u dit merk met lage corrosiviteit leggen.

AAShv - met papieren isolatie-aluminiumkernen bedekt met een laag gewone vinylisolatie. Het wordt gebruikt in netwerken tot 10 kV (of tot 6 kV, afhankelijk van de specifieke productversie). De kernen kunnen single-core zijn (markering "koelmiddel" of "OK") en multi-wired (markering "micron", "ms", "mzh"). Bij het leggen van een enkele kabelisolatie wordt verbranding niet bevorderd. Impregnatie van papierisolatie wordt uitgevoerd met een dergelijke viskeuze samenstelling dat deze niet lekt en bij het verbinden van de kabel in de koppelingen worden geen luchtinsluitsels gevormd. Het scherm is gemaakt van elektrisch geleidend papier. Het aantal levende van 1 tot 4, en het bereik van hun secties ligt in het bereik van 50-800 vierkante meter. mm.

Tot slot zou ik willen opmerken dat er de laatste tijd steeds meer wordt gezegd dat aluminium zal terugkeren naar elektrische bedrading van huishoudens. De echte reden hiervoor is moeilijk te bellen. Fabrikanten plaatsen nieuwe kabels gemaakt van niet-stromende onbuigzame legeringen, evenals de ontwikkeling van aluminiumkabels bekleed met een laag koper. Skeptici beweren dat dit een poging van Rusal is om de inkomsten uit de verkoop van haar producten te verhogen. In ieder geval moeten de typen en merken aluminiumdraden en -kabels weten om ze goed te kunnen gebruiken.

Huidige belastingen op kabels en draden

De stroombelastingen die zijn vastgelegd in de huidige voorschriften voor het gebruik van kabels en draden in elektrische netwerken zijn weergegeven in de tabellen 1 tot 11. De aangegeven waarden van stromen zijn voor omgevingsluchttemperaturen van +25 ° C en aarde voor +15 ° C voor gemiddelde legomstandigheden. Als het nodig is om een ​​specifieke stroombelasting voor een specifiek type kabel of draad en specifieke legomstandigheden te selecteren, moet u zich laten leiden door de technieken die zijn gespecificeerd in de normen en regels.

Tabel 1. Toelaatbare continue stroom voor draden met rubber en polyvinylchloride-isolatie met koperen geleiders, A

Tabel 2. Toelaatbare continue stroom voor draden met rubber en polyvinylchloride isolatie met aluminium geleiders, A

Tabel 3. Continu toelaatbare stroom voor flexibele kabels en draden met rubberen isolatie, A

Tabel 4. Toelaatbare continue stroom voor draden met koperen geleiders met rubberisolatie voor geëlektrificeerd transport van 1, 3 en 4 kV, A

Tabel 5. Toelaatbare continue stroom voor kabels met koperen geleiders met papieren isolatie geïmpregneerd op laagspanning in loodmantel, gelegd in de grond, A

Tabel 6. Toelaatbare continue stroom voor kabels met koperen geleiders met papieren isolatie geïmpregneerd op laag voltage in een loodmantel die in de lucht is gelegd, A

Tabel 7. Toelaatbare continue stroom voor met aluminium geïsoleerde kabels met geïmpregneerd papier op laagspanningskabels met loodmantel die in de grond zijn gelegd, A

Tabel 8. Toelaatbare continue stroom voor met aluminium geïsoleerde kabels met geïmpregneerd papier op hoogspanningskabels met loodmantel, gelegd in de lucht, A

Tabel 9. Toelaatbare continue stroom voor kabels met koperen geleiders met kunststofisolatie voor een spanning tot 3 kV, A

Tabel 10. Toelaatbare continue stroom voor kabels met aluminium geleiders met plastic isolatie voor een spanning tot 3 kV, A

Tabel 11. Toelaatbare continue stroom voor kabels met kunststofisolatie voor een spanning van 6 kV, A

Categorieën

Alfabetische index

interview

Handig voor jou

NYY-stroomkabel met isolatie van polyvinylchloride (PVC)

Keuze van kracht, stroom en doorsnede van draden en kabels

De keuze van kabel- en draaddoorsnedes is een essentieel en zeer belangrijk punt bij het installeren en ontwerpen van de lay-out van een elektrische installatie.
Voor de juiste keuze van de dwarsdoorsnede van de voedingskabel moet rekening worden gehouden met de waarde van de maximale stroom die door de belasting wordt verbruikt.

In het algemeen kan de volgorde van selectie van de voedingslijn als volgt worden bepaald:

Bij het installeren van kapitaalstructuren voor de installatie van interne elektriciteitsnetwerken mogen alleen kabels met koperen geleiders worden gebruikt (ПУЭ item 7.1.34).

De stroomtoevoer van stroomverbruikers van het 380/220 V-netwerk moet worden uitgevoerd met het TN-S of TN-C-S aardingssysteem (PUE 7.1.13), dus alle kabels die eenfaseconsumenten leveren, moeten drie geleiders bevatten:
- fasegeleider
- nul werkende geleider
- beschermend (aardgeleider)

De kabels die driefasige verbruikers leveren, moeten vijf geleiders bevatten:
- fasegeleiders (drie stukken)
- nul werkende geleider
- beschermend (aardgeleider)

Een uitzondering vormen de kabels die driefasige verbruikers leveren zonder uitgang voor de neutrale bedieningsgeleider (bijvoorbeeld een asynchrone motor met een K. S. Rotor). In dergelijke kabels kan de neutrale geleider ontbreken.

Van alle soorten kabelproducten die momenteel op de markt zijn, voldoen slechts twee soorten kabels aan strenge elektrische en brandveiligheidseisen: VVG en NYM.

Interne elektriciteitsnetten moeten worden gemaakt met een vlamvertragende kabel, dat wil zeggen met de "NG" -index (SP - 110-2003, pagina 14.5). Bovendien moet de elektrische bedrading in de holten boven de verlaagde plafonds en in de holtes van de schotten worden verminderd met rookontwikkeling, zoals aangegeven door de "LS" -index.

Het totale laadvermogen van een groepslijn wordt gedefinieerd als de som van de capaciteiten van alle consumenten in deze groep. Dat wil zeggen, om de kracht van een groepslijn van verlichting of een groepscontactdooslijn te berekenen, is het noodzakelijk om eenvoudig alle vermogens van de consumenten in deze groep bij elkaar op te tellen.

De waarden van stromen zijn gemakkelijk te bepalen, wetende de paspoortcapaciteit van de consument aan de hand van de formule: I = P / 220.

1. Om de doorsnede van de voedingskabel te bepalen, moet het totale vermogen van alle geplande energieverbruikers worden berekend en met een factor 1,5 worden vermenigvuldigd. Nog beter - om 2, om een ​​marge van veiligheid te creëren.

2. Zoals bekend veroorzaakt de elektrische stroom die door een geleider passeert (en hoe groter, hoe groter het vermogen van de elektrische voeding) het verwarmen van deze geleider. Toegestaan ​​voor de meest voorkomende geïsoleerde draden en kabels verwarming is 55-75 ° C. Op basis hiervan wordt de doorsnede van de geleiders van de ingangskabel geselecteerd. Als de berekende totale capaciteit van de toekomstige belasting niet hoger is dan 10-15 kW, volstaat het om een ​​koperen kabel te gebruiken met een doorsnede van 6 mm 2 en aluminium - 10 mm 2. Met een toename van het vermogen van de belasting wordt het dubbele gedeelte verdrievoudigd.

3. Deze cijfers gelden voor eenfasige openlegging van de voedingskabel. Als het verborgen wordt gelegd, wordt de sectie anderhalf keer verhoogd. Met driefasige bedrading kan de kracht van de consument worden verdubbeld als de pakking open is en 1,5 keer met een verborgen pakking.

4. Voor elektrische bedrading gebruiken rozetten en verlichtingsgroepen traditioneel draden met een doorsnede van 2,5 mm2 (contactdozen) en 1,5 mm2 (verlichting). Aangezien veel keukenapparatuur, elektrische gereedschappen en verwarmingstoestellen zeer krachtige verbruikers van elektriciteit zijn, moeten ze met aparte lijnen worden aangedreven. Hier worden ze geleid door de volgende figuren: een draad met een doorsnede van 1,5 mm 2 kan een belasting van 3 kW "trekken", een doorsnede van 2,5 mm2 is 4,5 kW, voor 4 mm2 is het toegestane belastingsvermogen al 6 kW en voor 6 mm 2 - 8 kW.

De totale stroom van alle verbruikers kennen en rekening houden met de verhouding van de toegestane stroombelastingsdraad (open bedrading) tot de draaddoorsnede:

- voor koperdraad 10 ampère per millimeter vierkant,

- voor aluminium 8 ampere per vierkante millimeter, kunt u bepalen of de draad die u hebt geschikt is of dat u een andere draad moet gebruiken.

Bij het uitvoeren van verborgen stroombedrading (in een buis of in een muur) worden de gereduceerde waarden verminderd door vermenigvuldiging met een correctiefactor van 0,8.

Opgemerkt moet worden dat openvermogenbedrading gewoonlijk wordt uitgevoerd met een draad met een doorsnede van ten minste 4 mm2 op basis van voldoende mechanische sterkte.

De bovenstaande verhoudingen worden gemakkelijk onthouden en verschaffen voldoende nauwkeurigheid voor het gebruik van draden. Als u meer wilt weten over de toelaatbare stroombelasting op lange termijn voor koperdraden en kabels, kunt u de onderstaande tabellen gebruiken.

De volgende tabel geeft een overzicht van de stroom, stroom en doorsnede van kabel- en geleidermaterialen voor de berekening en selectie van beschermende uitrusting, kabel- en geleidermaterialen en elektrische apparatuur.

Toegestane continue stroom voor draden en koorden
met rubber en PVC-isolatie met koperen geleiders
Toegestane continue stroom voor draden met rubber
en PVC-isolatie met aluminium geleiders
Toelaatbare continue stroom voor koperen geleiders
rubber geïsoleerd in metalen omhulsels en kabels
met koperdraden met rubberen isolatie in lood, polyvinylchloride,
Naira of rubberen omhulsel, gepantserd en ongewapend
Toegestane continue stroom voor kabels met aluminium geleiders met rubber of plastic isolatie
in lood, polyvinylchloride en rubberen omhulsels, gepantserd en ongewapend

Let op. Toelaatbare continue stromen voor vieraderige kabels met kunststofisolatie voor een spanning tot 1 kV kunnen in deze tabel worden geselecteerd voor driekernige kabels, maar met een factor van 0,92.

Overzichtstabel
draadsecties, stroom-, kracht- en belastingskarakteristieken

De tabel toont de gegevens op basis van PUE, voor de selectie van secties van kabel- en bedradingsproducten, evenals de nominale en maximale stroomsterkte van de beveiligingsschakelaars, voor eenfasige huishoudelijke lasten die het vaakst in het dagelijks leven worden gebruikt

De kleinste toelaatbare doorsnede van kabels en draden van elektrische netwerken in woongebouwen
Aanbevolen doorsnede van de voedingskabel, afhankelijk van het stroomverbruik:

- Koper, U = 220 V, enkelfasige, tweeaderige kabel

- Koper, U = 380 B, drie fasen, drie-aderige kabel

* de grootte van de doorsnede kan worden aangepast afhankelijk van de specifieke omstandigheden van het leggen van kabels

Laadvermogen afhankelijk van nominale stroom
automatische schakelaar en kabelsectie

De kleinste secties van geleidende draden en kabels in elektrische bedrading

De doorsnede leefde, mm 2

Snoeren voor aansluiting van elektrische huishoudontvangers

Kabels voor het aansluiten van draagbare en mobiele stroomverbruikers in industriële installaties

Twisted twin-core draden met gevlochten geleiders voor het stationair op rollen leggen

Onbeschermde geïsoleerde draden voor vaste bedrading binnenshuis:

rechtstreeks op de basis, op rollen, clips en kabels

op trays, in dozen (behalve doof):

voor de aderen bevestigd aan schroefclips

voor soldeerverbindingen:

Onbeschermde geïsoleerde draden in externe bedrading:

op muren, structuren of steunen op isolatoren;

bovenleiding-ingangen

onder luifels op rollen

Onbeschermde en beschermde geïsoleerde draden en kabels in buizen, metalen hulzen en dove dozen

Kabels en beschermde geïsoleerde draden voor vaste bedrading (zonder buizen, slangen en saaie dozen):

voor de aderen bevestigd aan schroefclips

voor soldeerverbindingen:

Beschermde en onbeschermde draden en kabels gelegd in gesloten leidingen of monolithisch (in bouwconstructies of onder pleisterwerk)

Geleiderdoorsneden en beschermende maatregelen voor elektrische veiligheid in elektrische installaties tot 1000V


Klik op de afbeelding om te vergroten.

De tabel met de keuze van de kabelsectie voor SOUE annunciators

Download een tabel met berekeningsformules - log in of registreer u om toegang te krijgen tot deze inhoud.

Keuze van de doorsnede van de geleiderkabel SOUE voor hoornluidsprekers
Een kabeldeel kiezen voor een gesproken melding
Toepassing van brandwerende kabels in APZ-systemen

Vanwege zijn frequentiekarakteristieken kunnen vlamvertragende kabels van de merken KPSEng-FRLS KPSESng-FRHF KPSESng-FRLS KPSESng-FRHF worden gebruikt als:

  • lussen voor analoge adresseerbare brandalarmsystemen;
  • kabels voor het ontvangen en verzenden van gegevens tussen apparaten voor brandmeldcentrales en besturingsapparaten voor brandbeveiligingssystemen;
  • interfacekabel van evacuatie waarschuwings- en controlesystemen (SOUE);
  • besturingskabel voor automatische brandblussystemen;
  • Besturingskabel voor rookbeschermingssystemen;
  • interfacekabel andere brandbeveiligingssystemen.

Als referentie-informatie hieronder worden de waarden van golfweerstanden en frequentiekarakteristieken van verschillende merkafmetingen van brandwerende kabels gegeven.

Algemene vergelijkende kenmerken van kabels voor het lokale netwerk

* - Datatransmissie over afstanden die de normen overschrijden, is mogelijk met behulp van componenten van hoge kwaliteit.

Kabelselectie voor CCTV-systemen

Meestal worden videosignalen via een coaxkabel tussen apparaten verzonden. Coaxiale kabel is niet alleen de meest gebruikelijke, maar ook de goedkoopste, meest betrouwbare, meest handige en gemakkelijkste manier om elektronische beelden over te brengen in televisiesurveillance systemen (STN).

Coaxiale kabel wordt geproduceerd door vele fabrikanten met een grote verscheidenheid aan maten, vormen, kleuren, karakteristieken en parameters. Het wordt meestal aanbevolen om kabels zoals RG59 / U te gebruiken, maar in feite omvat deze familie kabels met een breed scala aan elektrische eigenschappen. In televisiesurveillancesystemen en in andere gebieden waar camera's en video-apparaten worden gebruikt, worden ook de RG6 / U- en RG11 / U-kabels die vergelijkbaar zijn met de RG59 / U op grote schaal gebruikt.

Hoewel al deze kabelgroepen erg op elkaar lijken, heeft elke kabel zijn eigen fysieke en elektrische eigenschappen waarmee rekening moet worden gehouden.

Alle drie genoemde kabelgroepen behoren tot dezelfde gemeenschappelijke familie van coaxkabels. De letters RG betekenen "radiogids" en de nummers duiden verschillende soorten kabels aan. Hoewel elke kabel zijn eigen nummer heeft, zijn kenmerken en afmetingen, zijn in principe al deze kabels gerangschikt en werken ze hetzelfde.

Coaxkabelapparaat

De meest voorkomende kabels RG59 / U, RG6 / U en RG11 / U hebben een cirkelvormige dwarsdoorsnede. In elke kabel bevindt zich een centrale geleider, bedekt met diëlektrisch isolatiemateriaal, dat op zijn beurt is bedekt met een geleidende vlechting of afscherming om te beschermen tegen elektromagnetische interferentie (EMI). De buitenste laag over de vlecht (afscherming) wordt de mantel van de kabel genoemd.

Twee coaxiale kabelgeleiders worden gescheiden door een niet-geleidend diëlektrisch materiaal. De buitenste geleider (vlechtwerk) beschermt de centrale geleider (kern) tegen externe elektromagnetische interferentie. Een beschermende coating over de vlecht beschermt de geleiders tegen fysieke schade.

Centrale zenuw

De centrale kern is het belangrijkste middel voor het verzenden van video. De diameter van de centrale kern ligt gewoonlijk in het bereik van 14 tot 22 kaliber op het Amerikaanse assortiment van draden (AWG). De centrale kern is volledig koper of staal bekleed met koper (staal bekleed met koper), in het laatste geval wordt de kern ook ongeïsoleerde koperen beklede draad genoemd (BCW, Bare Copper Weld). De kabelkern voor CTH-systemen moet koper zijn. Kabels waarvan de centrale geleider niet volledig koper is, maar alleen bedekt met koper, hebben een veel hogere lusweerstand bij videosignaalfrequenties, zodat ze niet kunnen worden gebruikt in STN-systemen. Bekijk de doorsnede van de kern om het type kabel te bepalen. Als de kern van staal is met een koperen coating, dan is het centrale deel zilver en niet koper. De actieve weerstand van de kabel, dat wil zeggen de weerstand tegen gelijkstroom, is afhankelijk van de diameter van de kern. Hoe groter de diameter van de centrale kern, hoe minder weerstand. Een kabel met een centrale kern met een grote diameter (en dus minder weerstand) kan een videosignaal op grotere afstand overbrengen met minder vervorming, maar is duurder en minder flexibel.

Als de kabel zo wordt gebruikt dat deze vaak in een verticale of horizontale richting kan worden gebogen, kies dan een kabel met een centrale geleider voor meerdere geleiders die is gemaakt van een groot aantal draden met een kleine diameter. Gestrande kabel is flexibeler dan enkeladerige kabel en is beter bestand tegen metaalmoeheid bij het buigen.

Diëlektrisch isolatiemateriaal

De centrale kern is gelijkmatig omgeven door een diëlektrisch isolatiemateriaal, meestal polyurethaan of polyethyleen. De dikte van deze diëlektrische isolatielaag is hetzelfde over de gehele lengte van de coaxiale kabel, waardoor de kabelprestatiekenmerken over de gehele lengte hetzelfde zijn. Dielectors gemaakt van poreus of geschuimd polyurethaan verzwakken het videosignaal minder dan diëlektrica gemaakt van vast polyethyleen. Bij het berekenen van het lengteverlies voor elke kabel, zijn kleinere lengteverliezen wenselijk. Bovendien geeft een geschuimd diëlektricum de kabel meer flexibiliteit, wat het werk van installateurs vergemakkelijkt. Maar hoewel de elektrische eigenschappen van een kabel met een geschuimd diëlektrisch materiaal hoger zijn, kan een dergelijk materiaal vocht absorberen, waardoor deze eigenschappen afnemen.

Vast polyethyleen is taaier en behoudt zijn vorm beter dan een geschuimd polymeer, is beter bestand tegen knijpen en knijpen, maar het leggen van zo'n harde kabel is iets moeilijker. Bovendien is het signaalverlies per lengte-eenheid groter dan dat van een kabel met een geschuimd diëlektricum, en hiermee moet rekening worden gehouden als de kabellengte groot moet zijn.

Vlechtwerk of scherm

Buiten is het diëlektrische materiaal bedekt met een koperen vlecht (scherm), dat de tweede (meestal geaarde) signaalgeleider is tussen de camera en de monitor. De vlecht dient als een scherm tegen ongewenste externe signalen of pickups, die gewoonlijk elektromagnetische interferentie (EMI) worden genoemd en die het videosignaal negatief kunnen beïnvloeden.

De kwaliteit van de afscherming tegen elektromagnetische interferentie hangt af van het kopergehalte van de vlecht. Coaxiale kabels van marktkwaliteit bevatten losse koperen vlechtwerken met een afschermend effect van ongeveer 80%. Dergelijke kabels zijn geschikt voor veelvoorkomende toepassingen waar elektromagnetische interferentie klein is. Deze kabels zijn goed in gevallen waarin ze worden geleid in een metalen buis of metalen buis, die als een extra afscherming dienen.

Als de bedrijfsomstandigheden niet erg bekend zijn en de kabel niet in een metalen buis is gelegd, die als extra bescherming tegen EMI kan dienen, is het beter om een ​​kabel te kiezen met maximale bescherming tegen interferentie of een kabel met een strakke vlecht die meer koper bevat dan coaxkabels van marktkwaliteit. Het verhogen van het kopergehalte zorgt voor een betere afscherming vanwege het hogere gehalte aan afschermingsmateriaal in een meer dichte vlecht. CTN-systemen vereisen koperen geleiders.

Kabels waarin het scherm aluminiumfolie of verpakkingsfoliemateriaal is, zijn niet geschikt voor televisiesurveillancesystemen (STN). Dergelijke kabels worden gewoonlijk gebruikt voor het uitzenden van radiofrequentiesignalen in zendsystemen en in signaaldistributiesystemen van een collectieve antenne.

Kabels waarin het scherm is gemaakt van aluminium of folie, kunnen videosignalen zo vervormen dat de beeldkwaliteit onder het vereiste niveau in surveillancesystemen daalt, vooral wanneer de kabellengte groot is, dus deze kabels worden niet aanbevolen voor gebruik in STN-systemen.

Buitenste schil

Het laatste onderdeel van de coaxiale kabel is de buitenmantel. Verschillende materialen worden gebruikt voor de vervaardiging, maar meestal polyvinylchloride (PVC). Kabels worden geleverd met een omhulsel van verschillende kleuren (zwart, wit, geelachtig bruin, grijs) - zowel voor installatie buitenshuis als voor installatie in ruimten.

De keuze van de kabel wordt ook bepaald door de volgende twee factoren: de locatie van de kabel (binnen of buiten) en de maximale lengte.

Coaxiale videokabel is ontworpen om een ​​signaal met een minimaal verlies van een bron met een karakteristieke impedantie van 75 ohm door te geven aan een belasting met een karakteristieke impedantie van 75 ohm. Als u een kabel gebruikt met een andere karakteristieke impedantie (geen 75 Ohm), treden er extra verliezen en reflecties van de signalen op. Kabelkarakteristieken worden bepaald door een aantal factoren (centraal kernmateriaal, diëlektrisch materiaal, vlechtontwerp, enz.), Die zorgvuldig moeten worden overwogen bij het kiezen van een kabel voor een bepaalde toepassing. Bovendien hangen de signaaloverdrachtskarakteristieken van de kabel af van de fysieke omstandigheden rond de kabel en van de methode van het leggen van kabels.

Gebruik alleen kabels van hoge kwaliteit, kies deze zorgvuldig, rekening houdend met de omgeving waarin deze zal werken (binnen of buiten). Voor videotransmissie is een kabel met een koperen eenaderige kern het meest geschikt, behalve in gevallen waarin een grotere kabelflexibiliteit vereist is. Als de bedrijfsomstandigheden zodanig zijn dat de kabel vaak wordt verbogen (bijvoorbeeld als de kabel is aangesloten op een scanapparaat of een camera die horizontaal en verticaal roteert), is een speciale kabel vereist. De centrale geleider in zo'n kabel is multicore (gedraaid uit dunne aders). Kabelgeleiders moeten van puur koper zijn. Gebruik geen kabel waarvan de geleiders zijn gemaakt van staal dat is bekleed met koper, omdat een dergelijke kabel geen goed signaal afgeeft op de frequenties die worden gebruikt in STN-systemen.

Geschuimd polyethyleen is het best geschikt als een diëlektricum tussen de centrale kern en de huls. De elektrische eigenschappen van polyethyleenschuim zijn beter dan die van vast (vast) polyethyleen, maar het is meer vatbaar voor de negatieve effecten van vocht. Daarom verdient, in omstandigheden met hoge vochtigheid, vast polyetheen de voorkeur.

In een typisch STN-systeem worden kabels met een lengte van niet meer dan 200 m gebruikt, bij voorkeur RG59 / U-kabels. Als de diameter van de buitenkabel ongeveer 0,25 inch is. (6,35 mm), wordt geleverd in rollen van 500 en 1000 voet. Als u een kortere kabel nodig hebt, gebruikt u een RG59 / U-kabel met een centrale geleider van kaliber 22, waarvan de weerstand ongeveer 16 ohm per 300 m is. Als u een langere kabel nodig hebt, dan is een kabel met een centrale geleider van meter 20 waarvan de gelijkstroomweerstand ongeveer gelijk is 10 ohm per 300m. In ieder geval kunt u gemakkelijk een kabel aanschaffen waarin het diëlektrische materiaal van polyurethaan of polyethyleen is. Als u een kabellengte van 200 tot 1500 voet nodig hebt. (457 m), de RG6 / U-kabel is het meest geschikt. Met dezelfde elektrische eigenschappen als de RG59 / U-kabel is ook de buitendiameter ongeveer gelijk aan de diameter van de RG59 / U-kabel. De RG6 / U-kabel wordt geleverd in spoelen van 500 voet. (152 m), 1000 ft. (304 m) en 2000 ft (609 m) en is gemaakt van verschillende diëlektrische materialen en verschillende materialen voor de buitenschil. Maar de diameter van de centrale kern van de RG6 / U-kabel is groter (kaliber 18), daarom is zijn weerstand tegen gelijkstroom minder, hij is ongeveer 8 ohm per 1000 voet. (304 m), wat betekent dat het signaal op deze kabel over lange afstanden kan worden verzonden dan de RG59 / U-kabel.

De RG11 / U-kabelparameters zijn hoger dan de RG6 / U-kabelparameters. Tegelijkertijd zijn de elektrische eigenschappen van deze kabel in principe hetzelfde als die van andere kabels. Het is mogelijk om een ​​kabel te bestellen met een centrale kern van 14 of 18 kaliber met een DC-weerstand van 3-8 Ohm per 300 m). Omdat deze kabel van alle drie de kabels de grootste diameter heeft (10,3 mm), is het moeilijker om eraan te werken. De RG11 / U-kabel wordt meestal in rollen van 500 voet verzonden. (152 m), 1000 ft. (304 m) en 2000 ft. (609 m). Voor speciale toepassingen maken fabrikanten vaak wijzigingen in de RG59 / U-, RG6 / U- en RG11 / U-kabels.

Als gevolg van veranderingen in brandveiligheids- en veiligheidsvoorschriften in verschillende landen, worden fluoroplastische (teflon of teflon®) en andere brandwerende materialen steeds populairder als materialen voor diëlektrica en schalen. In tegenstelling tot PVC geven deze materialen geen toxische stoffen af ​​in geval van brand en worden ze daarom als veiliger beschouwd.

Voor ondergronds leggen raden we een speciale kabel aan die direct in de grond wordt gelegd. De buitenmantel van deze kabel bevat vochtwerende en andere beschermende materialen, zodat deze rechtstreeks in de greppel kan worden gelegd. Over de methoden voor het leggen van ondergrondse kabels lees hier - Kabel die in de grond ligt.

Met een grote verscheidenheid aan videokabels voor camera's, kunt u eenvoudig de meest geschikte voor specifieke omstandigheden kiezen. Nadat u hebt besloten wat uw systeem moet zijn, moet u vertrouwd raken met de technische kenmerken van de apparatuur en de juiste berekeningen uitvoeren.

Het signaal wordt verzwakt in elke coaxiale kabel en deze verzwakking is groter naarmate de kabel langer en dunner is. Bovendien neemt de signaalverzwakking toe met toenemende frequentie van het uitgezonden signaal. Dit is een van de typische problemen van beveiligings-tv-bewakingssystemen (STN) in het algemeen.

Als de monitor zich bijvoorbeeld op een afstand van 300 m van de camera bevindt, wordt het signaal met ongeveer 37% verzwakt. Het ergste hiervan is dat verliezen misschien niet voor de hand liggen. Omdat je de verloren informatie niet ziet, kun je zelfs niet raden dat er überhaupt zulke informatie was. Veel STN-videobeschermingssystemen hebben kabels met een lengte van enkele honderden en duizenden meters en als de signaalverliezen daarin groot zijn, zullen de beelden op de monitors ernstig worden vervormd. Als de afstand tussen de camera en de monitor groter is dan 200 m, moeten speciale maatregelen worden genomen om een ​​goede videotransmissie te garanderen.

Kabelafsluiting

In televisiebeveiligingscontrolesystemen wordt het signaal van de camera naar de monitor verzonden. Gewoonlijk gaat de transmissie over coaxiale kabel. Een juiste kabelafsluiting heeft een aanzienlijke invloed op de beeldkwaliteit.

Met behulp van het nomogram (figuur 1) is het mogelijk de waarde van de aan de videocamera geleverde spanning te bepalen (alleen voor kabels met een koperen kern) door de kabeldoorsnede, de maximale stroom en afstand tot de stroombron te specificeren.
De verkregen spanningswaarde moet worden vergeleken met de minimaal toelaatbare spanningswaarde waarbij de camera stabiel kan werken.
Als de waarde lager is dan de toegestane waarde, is het nodig om de doorsnede van de gebruikte kabels te vergroten of een ander voedingsschema te gebruiken.
Het nomogram is ontworpen voor de voeding van videocamera's met gelijkstroom met een spanning van 12V.

Figuur 1. Nomogram voor het bepalen van de spanning op de camera.

De impedantie van de coaxkabel ligt in het bereik van 72 tot 75 Ohm, het is noodzakelijk dat het signaal op een willekeurig punt in het systeem via een uniforme lijn wordt verzonden om beeldvervorming te voorkomen en een juiste overdracht van het signaal van de camera naar de monitor te verzekeren. De kabelimpedantie moet over de gehele lengte constant zijn en gelijk zijn aan 75 ohm. Om het videosignaal correct en met lage verliezen van de ene naar de andere apparatuur over te dragen, moet de uitgangsimpedantie van de camera gelijk zijn aan de impedantie (karakteristieke impedantie) van de kabel, die op zijn beurt gelijk moet zijn aan de ingangsimpedantie van de monitor. De afsluiting van een videokabel moet 75 Ohm zijn. Gewoonlijk is de kabel aangesloten op de monitor en alleen dit zorgt ervoor dat aan de bovenstaande vereisten wordt voldaan.

Meestal wordt de video-ingangsimpedantie van de monitor bestuurd door een schakelaar die zich in de buurt van de end-to-end (invoer / uitvoer) aansluitingen bevindt die worden gebruikt om een ​​extra kabel op een ander apparaat aan te sluiten. Met deze schakelaar kunt u de belasting van 75 Ohm inschakelen, als de monitor het eindpunt van de signaaloverdracht is, of een hoge weerstandsbelasting (Hi-Z) inschakelen en het signaal naar de tweede monitor verzenden. Bekijk de technische specificaties van de apparatuur en de instructies om de vereiste beëindiging te bepalen. Als de afsluiting niet juist is gekozen, is de afbeelding meestal te contrastrijk en enigszins korrelig. Soms is het beeld tweeledig, er zijn andere vervormingen.

Het kenmerk van hoogfrequente kabels van het type RK - RG

Je Wilt Over Elektriciteit

  • Draaddwarsdoorsnede voor stroom.

    Bedrading

    In theorie en praktijk wordt speciale aandacht besteed aan de keuze van de huidige dwarsdoorsnede (dikte) van de draad. In dit artikel, het analyseren van de referentiegegevens, zullen we kennis maken met het concept "sectionele gebied".

  • Waarom heb ik een bewegingssensor nodig voor verlichting?

    Uitrusting

    In de regel definieert de term 'bewegingssensor' in het dagelijks leven een elektronisch infraroodapparaat waarmee de aanwezigheid en beweging van een persoon kan worden gedetecteerd en waarmee de kracht van verlichtingsapparaten en andere elektrische apparaten kan worden geschakeld.